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Singularities in Spaeetimes with Torsion 

L. C. Garcia de Andrade 1'2 

Received June 1, 1989 

The geometry of timelike congruences in spacetimes with torsion is considered. 
An extension of Hawking's cosmological singularity theorem is proposed and a 
comparison with the general relativity results is given. 

1. INTRODUCTION 

The investigation of the influence of singularities on the geometry of 
spacetime led Hawking (1966) to formulate several theorems on the conver- 
gence of timelike geodesic congruences, which later (Hawking and Penrose, 
1970) proved to be useful in the study of the occurrence of singularities 
in cosmology (Hawking, 1966). Some years later two different groups 
led by F. W. Hehl and A. Trautman laid the foundations of cosmology 
based on the Einstein-Cartan-Sciama-Kibble (ECSK) theory. The main 
hope of the Trautman group was to establish a singularity-free cosmology 
where the spin-spin contact interaction would be the agent responsible for 
avoiding gravitational collapse. The Trautman theory considered a spinning 
fluid in a spacetime with torsion, in contrast to what happened in general 
relativity, where the gravitational collapse could not be avoided regard- 
less of symmetry constraints on the cosmological models (Penrose, 1965). 
Although some cosmological models in ECSK have been constructed (Traut- 
man, 1973; Tafel, 1973; Kopczynski, 1972), some singular models have also 
been constructed. In particular, Kerlick (1975) has shown, by studying the 
Dirac field as a source for the torsion, that it causes a positive effective 
mass term in the energy condition of the generalized singularity theorem 
for ECSK, making use of Hehl's energy-momentum tensor, where the 
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spin-spin contact interaction enhances rather than opposes singularity 
formation (see also Bedran and Garcia de Andrade, 1983). Based on these 
facts, it seems that the singularity problem in ECSK is still an open question 
in gravitational physics and deserves further investigation. Here I propose 
the germ of such a program by considering the behavior of the timelike 
nongeodesic autoparallel congruences in ECSK. An expression for the 
Raychauduri equation in Riemann-Cartan spacetime is also derived and 
the consequences for the singularity theorem are discussed. 

2. THE GEOMETRY OF TIMELIKE CONGRUENCES IN 
SPACETIMES WITH TORSION 

The physical meaning of the word singularity is sometimes associated 
with divergences as in the case of Maxwell fields. Nevertheless, Geroch 
(1967, 1968a, b) has shown that the situation is not so simple, and a detailed 
study of singularities would require some knowledge of the topology of 
general relativity (Penrose, 1972) and the study of the completeness of 
geodesics. One of the main points in the analysis of Hehl's group of the 
singularity problem extension to ECSK was the assumption that the causality 
structure of spacetimes with torsion would be the same as the Riemannian 
one, i.e., that the torsion does not couple with null geodesics (like those of 
photons, neutrinos, or gravitons). Nevertheless, some authors (Prasanna, 
1975; de Sabbata and Gasperini, 1981) consider that photons do couple 
with torsion and that therefore the causality structure in U4 should be 
distinct from that of the Riemannian spacetime of general relativity. Here 
we show that the convergence of timelike curves in Riemann-Cartan space- 
time is still valid in case this timelike vector is the four-velocity of the 
spinning fluid. However, the situation is not so simple in the case ~a 
(a = 1, 2, 3, 4) is an arbitrary timelike vector field describing a general 
timelike congruence in U4. Let us now consider (Geroch, 1970) the conver- 
gence c =-Va~ ", where V~ is the Riemann-Cartan connection. Then 

~b~bc=__~b~b~a~a  = __Va(~b~b~a)_F ~a~b~b~a..]_ Rab~a~b __2Sad~b d ~b~a 

(2.1) 

where we have used the Ricci identity in the Riemann-Cartan spacetime 
(Schouten, 1954) 

= -- 2Scd V b~a R ad~b 2V[dVc]~ a b b 

where b R,~ac is the Riemann tensor in U4 and Scba is the torsion tensor. In 
the case of a spinning fluid congruence, ~a ~. U a, where u a (uau,, = -1) is 

= S~b = O, the four-velocity of the fluid, the Frenkel condition Sab Sab uc, b 
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reduces expression (2.1) to 

ubVbc = VaubVbu a + RabU~U b (2.2) 

This equation reduces to the Raychauduri equation for the spinning fluid 
(Fennelly et al., 1986) 

RabUaU b = - -  ~ 0  2 "-F 0 -2 -F 60 2 "q- S 2 (2.3) 

where we have used the decomposition of the covariant derivative of the 
four-velocity in terms of the fluid parameters, shear 0-2, angular velocity 
to 2, and expansion 02, 

VaUb = tOab + 0-ab + l Ohab + AaUb (2.4) 

where t%b, O'~b, hab, and Ab are, respectively, the angular velocity, shear, 
and projection tensors and the acceleration of the spinning fluid. Let us 
now consider the case of a shear-free, irrotational cosmological model. In 
this case the Raychauduri equation reduces to 

R,,bUaU b = S 2 -102 (2.5) 

From the difference in sign in front of the terms S 2 and 02 one can see that 
the stage of evolution of the universe where the spin density S 2 = S,,bS ab 
dominates the expansion ($2-102), which means physically in the state 
where the spin density S 2 = S,,bS "b dominates the expansion, then 

R~b (F)uau b >- 0 (2.6) 

which is exactly the analog of the Hawking convergence condition in U4, 
since here the Ricci tensor is computed in terms of the Cartan connection. 
In fact, it reduces to the Hawking formula Rab({" })uau b >-- 0 for the conver- 
gence of geodesics in torsion-free spacetimes. Here {-} represents the 
symmetric Levi-Civita-Christoffel symbol. In the case of static spacetimes 
with torsion (Bedran and Garcia de Andrade, 1983) 02= to 2= 0-2= 0 and 
the convergence formula has a lower bound R,b(F)uau  b = $2_> 0. All these 
facts lead us to conclude that we should consider expression (2.6) as a 
candidate for the extension of the Hawking-Penrose singularity theorem 
to spacetimes with torsion. We follow the Geroch argument path in U4. 
First we shall consider timelike congruences that obey the autoparallel 
(Hehl et al., 1976) equation 

~bVb~  = 0 (2.7) 

In the case of torsion-free connections, (2.7) reduces to the geodesic equation 
~bv~b~a = 0. With (2.7) we can say that V~b is a symmetric tensor in the 
3-space orthogonal to ~ .  This also simplifies equation (2.1) to 

~bVbc=(Va~b)(vb~a)+ Rab(I')~a~b--ESbd~dVb~a (2.8) 
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From the matrix inequality trace A 2 ----- 1 (trace A )  2 for a 3 x 3 matrix A we 
obtain 

(V~s163 a) > �89 2 (2.9) 

From (2.9) we cannot say much about the behavior of the timelike con- 
gruence, but if the torsion tensor sbd is a constraint to the expression 

Rab(F)~a~ b >-- 2Sbad~dVb~ a (2.10) 

then (2.8)-(2.10) imply 

~bVbC--> �89 2 (2.11) 

Physically this means that the congruence of autoparallels in U4 converges. 
This condition reduces to Hawking's convergence condition in GR. However 
in GR, condition (2.11) is equivalent to the strong energy condition 

( T~.R-- �89 ~"~ :b -- 0 (2.12) 

via the Einstein field equations, where Tab is the stress-energy tensor. Here 
a similar situation occurs if one considers the quasi-Einsteinian form of the 
Einstein-Cartan field equations 

Rab(F)=r,~ECSK 1 mECSK' ,  t l~b --~g~bi ) (2.13) 

Assuming that our vector ~a coincides with the four-velocity of the spinning 
fluid, and using the Frenkel condition S~du a= 0 in (2.11), yields 

R~b(F)u~u b >- 0 (2.14) 

Expression (2.14) can be considered as an extension of Hawking's conver- 
gence condition to spacetimes with torsion and is therefore a good candidate 
for the extension of Hawking-Penrose theorems to Riemann-Cartan space- 
time. It is also important to mention that in this case the condition (2.14) 
is equivalent to the strong energy condition in spacetimes with torsion. 

3. DISCUSSION 

A natural consequence of the study made here could be to investigate 
the energy conditions, weak, strong, and dominant, in ECSK and their 
connection with the geometry of the singularities. Also, the causal behavior 
of autoparallels should be investigated along the same lines as Penrose did 
in GR (Penrose, 1972). This appears elsewhere (Garcia de Andrade, 1990). 
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